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A computational technique is described for determining the ideal magnetohydro- 
dynamic spectrum and its associated eigenfunctions. The method is suitable for axi- 
symmetric toroidally confined plasmas with arbitrary cross sections. Using the special 
case of a long, straight, elliptical plasma column with low pressure and uniform axial 
current where analytic results are available, a study is made of the efficacy of two 
different choices of expansion functions. The use of a finite-element representation, 
keeping only a small number of terms, is shown to provide a good description of the 
system. 

I. INTRODUCTION 

Because of the renewed interest in tokamak configurations with noncircular 
cross sections, it is essential that computational techniques be developed with 
which one can study the magnetohydrodynamic stability properties of the system. 
Although several such programs have been written [l-9] and have shown promise 
for the study of specific configurations, it seems appropriate and indeed probably 
necessary for low-pressure systems to construct one in which the coordinate 
system is chosen to conform to the physical system. Here we describe such a 
program and present a specific application to a simple configuration where analytic 
results are available [IO]. This provides an excellent test for comparing different 
computational procedures against exact results. Further, it provides under- 
standing of the spectrum for a system in which the coupling is relatively 
complicated. 

In Section II we formulate the model problem with sufficient generality that 
it can be applied to nearly arbitrary axisymmetric configurations. After posing 
the variational problem we introduce our coordinate system and describe how 
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we project the displacement vector. We then discuss our choices of expansion 
functions which reduce the problem to one of matrix diagonalization. 

In Section III we restrict ourselves to the special case of a long, straight, uniform 
axial current carrying, low pressure plasma column with an elliptic cross section, 
embedded in a vacuum. This provides a reasonably good representation of a 
tokamak. We describe the equilibrium configuration and evaluate expressions 
for the matrix elements. We compare finite-element with Fourier-Bessel expansions 
for this model. 

The nature of the magnetohydrodynamic spectrum has been the subject of 
considerable recent interest [I I-141, both because of its usefulness in understanding 
the instability problem and because of its relevance to the problem of heating 
a plasma. One application of a code such as this is to study this spectrum. Such 
work is also useful, in the context of this paper, because it provides a good measure 
of the efficacy of different techniques. For this reason we provide in Section IV 
a discussion of the behavior near a singular surface of the eigenfunctions associated 
with the continuous spectrum. 

We present some results for this model in Section V. We study the rate of 
convergence of the eigenvalues as a function of the number of expansion functions 
for both Fourier-Bessel and finite-element expansion functions. We also investigate 
how well the two techniques describe the behavior of an eigenfunction of the 
continuous spectrum near the singular surface. 

II. FORMULATION 

The problem of determining the magnetohydrodynamic spectrum of toroidal 
systems can be posed as that of finding estimates of the eigenvalues ~2 and eigen- 
functions 5 that make the Lagrangian 

L = w”K(s*, 9) - SW*, S) (1) 

stationary with respect to variations of 5. Here Re[e(r) exp(-iwt)] is the displace- 
ment of a fluid element from its equilibrium position r, and &K and 6 W are the 
kinetic and potential energy functionals [ 151: 

2K = j- dr p I 5 I’, 
%J 

2,,=/Dd~[~Q-B~~“+~B x 5*-Q 

- 2e ’ op ;4* - x + YP I V - 5 la] + 1 dr I V x A Is, (3) I) 
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with p the plasma density, Q = V x (g x B) the perturbed magnetic field, 
x = (B/B) * V(B/B) the local magnetic field line curvature, y the ratio of specific 
heats, and A the perturbed vector potential in the vacuum region. The admissible 
variational functions are those for which the displacement has a finite kinetic 
energy norm and the normal component of the perturbed magnetic field is con- 
tinuous at the plasma-vacuum interface and vanishes at the vacuum wall. 

We adopt the Galerkin method [16]: 5 is approximated by P), a linear super- 
position of M linearly independent expansion functions @z), viz, 

g(M) = c” ayap. 

After substitution of Eq. (4) into Eq. (I), variation with respect to uz)* leads to 
the matrix eigenvalue problem 

for u(M)’ and ak”). We assume, without proof, that 5c”) converges to a solution 
of Eq. (1) in the limit as M + co. This is a reasonable assumption since we know 
from the work of Mikhlin [17, 181 that convergence will certainly hold when 6 W 
is positive definite, which it is when the plasma is stable. Note that Rayleigh’s 
principle [15] implies that, if 1 5 - P) 1 is O(E), then ~2 - c&@ is O(c2) where 
E -+ 0 as M + co. This provides little help towards choosing the sets of expansion 
functions that optimise convergence in a practical sense. 

The @CM) that give the most rapid convergence are the actual eigenfunctions 
of the system which, of course, we do not know. An obvious approach is to use 
the exact analytic eigenfunctions of a simpler but similar physical model. Usually, 
this leads to a global expansion set: one in which the support of all the *c) is the 
entire plasma volume. This approach has been successfully applied [l, 3, 191. 
There are some objections to this attractive scheme. The first is that it is not very 
flexible; a considerable amount of effort is required to find a good comparison 
system. Of special relevance is the treatment of localized modes which occur near 
singular magnetic surfaces. Since these are poorly represented by global expansions 
with a relatively small number of terms, they might affect the accuracy of all the 
modes. A further practical difficulty results from the extensive numerical integra- 
tion required to evaluate the matrix elements. Since all the integrals extend over 
the plasma volume and the higher eigenfunctions are generally oscillatory, 
considerable care must be exercised to avoid a rapid deterioration of numerical 
accuracy as the set of trial functions is increased. 

An alternative way of choosing the @r) s is to use a finite-element expansion: 
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one in which the support of each Qr’ is only a small region in the plasma. This 
approach has also been useful [2, 8, 91. At first sight, its most serious drawback 
appears to be that one is forced to work with large matrices. On the other hand, 
as the system being studied departs from the comparison system it is by no means 
clear that more expansion functions are required than in a global expansion set. 

Since our interest centers on axially symmetric configurations, it is appropriate 
to describe the equilibrium magnetic field by 

Here the azimuthal angle 4 is the ignorable coordinate and the magnetic field 
lines form surfaces labeled by constant values of t,L The poloidal flux inside a 
surface is given by 2n-Bo Jfd#. The function g associated with the toroidal field 
must depend on # alone so that the current lies in the magnetic surfaces. 

It is obvious that C$ should be used as a coordinate. 
Since current can flow freely along field lines, and fluid can not cross them, 

it is clear that plasma behavior is quite anisotropic. Mathematically, our equations 
are higher order in derivatives within magnetic surfaces than in derivatives across 
them. To represent this with good numerical accuracy, it seems necessary to use # 
as a coordinate. In this system the plasma-vacuum interface is a coordinate 
surface. This makes it easy to use Green’s function techniques to express the 
extremized contribution to 6 W from the vacuum region outside the plasma in 
terms of the components of an arbitrary 5 . V$ on this surface. 

It is not clear what one should choose to label the third coordinate. One obvious 
choice would be to construct an orthogonal system so as to simplify the analysis. 
Unfortunately, this formal simplification does not guarantee practical improve- 
ment. A second possible choice would be to determine the coordinate 0 in such 
a way that the magnetic field lines are straight, so that 

B . V = B . V&8/88 + q(#) a/&$) 

since this particular operator enters the calculation in many places. This choice 
makes the Jacobian 

(7) 

where Xis the distance from the major axis. Here we normalize # to unity on the 
plasma-vacuum interface. A third possibility would be to choose 0 to make the 
Jacobian a function of $ alone. We adopt the idea associated with Eq. (7) since 
it provides a natural representation of the physics associated with behavior near 
a closed magnetic field line and has proven useful for many applications. For the 
special configuration discussed in Section III, this also makes $ a constant. 
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We now consider the decomposition of the displacement vector in the plasma 
region. Keeping in mind the fact that the Lagrangian is diagonalized by the 
normal modes of the physical system, we should choose components of the per- 
turbations that represent the polarizations of the various modes, at least in the 
low pressure, long wave length limit that is reasonable for present day devices. 
This is also likely to be the most troublesome regime, since the range between 
the highest and lowest eigenvalues is most exaggerated here. Indeed, the frequency 
range spans many orders of magnitude. The lowest frequency, or sound, modes 
consist of flow along the magnetic field lines. The next branch, that of shear- 
Alfven waves, has a divergencefree motion perpendicular to the field. The fast 
magnetosonic mode is primarily due to this perpendicular compressibility. Since 
the frequencies of these different branches can be widely separated, it is important 
to select the representation so that evaluation of the spectrum does not rely on 
cancellation of large terms for its accurate calculation. The sound waves are well 
treated by the projection 

5 = ($PdgR2Bo) Ve x B + i($&lgR2Bo) B x V# + iWo> B, (8) 

while, at least in the long wavelength limit, the shear AlfvCn and compressional 
branches are decoupled by the transformation 

We next consider the treatment of the vacuum region. We see from Eqs. (1) 
and (3) that the Lagrangian L is extremized if V x (V x A) = 0, or V x A = Vx. 
Taking the divergence of this latter expression, we find that 

v2x = 0. (10) 

Further, multiplying Eq. (10) by x and integrating over the vacuum region, we 
see that 

zsw, = -2a J-“” de px* vx . v+ 
0 

(11) 

evaluated over the plasma-vacuum interface. The contribution to 8 W from the 
outer wall vanishes because the normal component of the perturbed field must 
be zero there. Since this component of the perturbed field is equal to Q . V#/l V# la 
on the interface, the vacuum problem reduces to one of evaluating ~(0) on this 
boundary. This is accomplished by writing a Green’s function solution of Eq. (10) 
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which enables us to determine x in terms of Q, on the interface. If toroidal effects 
are negligible, this reduces to 

X(s) = $ j dt [x(t) y - &(kr) .%$v], 

where r ES ] r(s) - r(t)/, 8/&r is the normal derivative, and the contour is taken 
over both the plasma-vacuum interface and an arbitrarily placed conducting 
wall. Marder [20] used this technique for straight systems with very long periodicity 
length such that the Bessel function K, could be represented by a log function. 

Now that we have chosen our coordinates and described the polarizations of 
our perturbations, it is appropriate to continue the discussion of the choice of the 
expansion functions 0, @“I. It is convenient to use Fourier series in 0 and 4, 

The different terms in n decouple and we can drop this subscript accordingly. 
Obviously, we cannot expect decoupling in 6. It is useful to note, however, that 
if the configuration possesses sufficient symmetry, modes with even and odd 
values of I do not couple and we can treat them separately. In the numerical work 
it is essential to truncate the series in 1. 

In this paper we discuss two ways of representing the # dependence. We choose 
for our global expansion functions the eigenmodes of a straight plasma column 
with circular cross section and uniform current and density profiles. Thus we set 

L(4) = c” 5l,m@bi~“m’<n9 (14) 
W=O 

where 
@ply = IZIP 

* 2 

@z!%) = JLit.m#““>, m = 1, 2,..., M 

withj,,, the mth root of Jl , and with similar expressions for 6, and ~~ . The Bessel 
functions are a complete set of functions that vanish on the boundary # = 1. 
In a circular pinch with constant axial current and density, they can represent 
the infinite set of degenerate Alfven modes. The algebraic term must be added 
to complete the representation of functions with arbitrary boundary values. 
This term is the eigenfunction for a kink mode in a circular system. We must 
omit the <o,o term which would not contribute to the kinetic or potential energy. 

We use for our finite-element approach a tent function expansion 
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The Heaviside functions H(p) = (p + 1 p l)/2p make the Q’s vanish except 
between the nodal points &,-r and t/~~+~ , where z,!J, = m/M. The function Y,(#) 
is one when 1 is even and Z+F/~ when I is odd. This function is introduced for the odd 
modes because the analytic work [lo] indicates that &(#) = 0(#lzl/2) as # --z 0. 
Thus it improves the representation. It is necessary to set <Z,O and a,,, to zero to 
avoid an infinite kinetic energy. An elegant way of removing the singularity in K 
resulting from the addition of an arbitrary constant to 5 is to add the projection 
matrix 

to K(ay$ ) @(1”$). This projects onto the one-dimensional subspace spanned 
by the 5 = constant solution and, thus, does not affect the true eigenmodes of 
the system. It makes the problem well defined by replacing the kinetic energy 
with a positive definite matrix. It introduces a spurious eigenmode at w2 = 0 
which provides a check on the numerical accuracy of the calculation. Equation (16) 
provides a good basis for expansion of the &‘s and 6,‘s in Eq. (14). However, it is 
useful to introduce another set of expansion functions for the 7;s. We chose it 
to be 

This is a reasonable choice because, unlike & and 6r , there are no # derivatives 
of or . As with many numerical problems, one can either use lowest-order inter- 
polations or higher-order schemes. We have chosen the class with the lowest 
continuity properties consistent with a finite kinetic energy norm. 

When either the global or the local expansion scheme is substituted into Eq. (l), 
we are led to the matrix problem of Eq. (5). One might hope that when global 
expansion techniques are employed the matrices can be kept small such that 
standard matrix eigenvalue schemes are satisfactory. The matrices can be large, 
but sparse, when local expansions are made. Some progress has been made towards 
developing efficient techniques for obtaining the eigenvalues and eigenfunctions 
of large, sparse systems by Lagrangian reduction [21]. 

III. APPLICATION 

Our discussion has been very general until now. In order to be specific, we 
restrict consideration to a special case which is amenable to analytic treatment [lo] 
and is therefore especially useful for testing the efficacy of different types of expan- 
sion functions. Results obtained from a generalization of this model to include 
the effects of pressure gradients and finite axial length are forthcoming [22]. 
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A. Model 

We consider a cylindrical column with an elliptic cross section co&ted in 
a uniform axial magnetic field B, , carrying a uniform axial current J, , and 
embedded in a vacuum. For simplicity, we assume that the plasma pressure is 
negligible, the axial current is small, and the periodicity length L is large. This is 
the usual representation of a tokamak configuration to lowest order in the inverse 
aspect ratio. Thus, we assume that (p/Bz2)li2 - B,IB, -a/L = E < 1, where 
a measures the size of the elliptic cross section of the plasma. We set 
f(#) = b2a2LJz/4rBO(b2 + a”) and g(#) = 1. Then, from the condition that 
J = V x B, we find that, in the usual Cartesian coordinates, z,L = x2/a2 + y2/b2 
inside the plasma. The natural coordinate system (#, 8, z) is given by 

In this model 

x = a*l12 cos 9, 

y = b#lf2 sin 8. 
(19) 

B . V = (kBo/q)P/ae + (g/k> a/W (20) 
and 

,$ = baLl4r (21) 

with k = 27r/L and the safety factor q = ba/2f a constant throughout the plasma. 
Dewar et al. [lo] showed that the frequencies of the magnetosonic waves are 

large, of order E-~, compared to those associated with kink modes and shear 
Alfven waves. We set 6, = 0 to make V . EL = 0 and thus eliminate the fast 
magnetosonic modes. We also take +rz = 0 to remove the sound waves. This 
reduces Eq. (1) to 

with 

- (I - md(l’ - 4 l1 d# ~b%,b UN1 

+ [Z(Z - nq)(b2 + a3 - I Z I U - nqY bal I CtW12 ~ZP,Z/ (22) 
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Kere CO,~ = k2B,2jp,q2, where pO = Ji p(g) d#, is a poloidal AlfvCn frequency 
and primes denote derivatives with respect to $J. The last term in Eq. (22) enters 
through Eq. (11) which can be evaluated analytically in this model. The problem, 
then, is to determine the functions &(lt> that extremize Eq. (22). 

B. Expansion Functions 

We first use the global expansion functions defined in Eq. (15). If the plasma 
density as well as the axial current is uniform inside the plasma, the integrals 
in Eq. (22) can be evaluated analytically; thus 

where 

fiz’,m’.z,m 

(24) 

_ (b2 - a3 (I’ 4 Wz~,m~.l-z,m 
2 I cgm - $,mJ J~~~~+l(.hh~) JI~I+~(~z.~(~ - %L~)U - Lo) 

+w+~ll~l 
Jl’.m’ 

m + 1) Jlt’l+1(.h’.m’)U - ~rnxo) hn,o 

+ 2(-1)z 1 I’ 1 1 l’ + l 1 ff(-1’ - 1) J, ,+l(jz 

jhm 
Z .m m'.O 

) 8 (1 - LJ 

+ [sm., 

with H(p) E (p + I p 1)/2p. It is easily seen that A?!o,o,,,o is zero, corresponding, 
as previously noted, to the fact that one can add an arbitrary constant to 5 in 



MHD SPECTRA IN TOKAMAKS 141 

Eq. (9) without changing 5. Analytic expressions for the kinetic energy term K 
cannot be found if the density varies and the integrals must be evaluated 
numerically. 

Introducing the expansion functions of Eq. (16) leads to matrix elements with 

- Cb2 ; a2) (l’lp;), - 21’pt!m, + 21P$!,, - 4P2.J 8r*,,+2 

- tb2 ; a2) (I’lPy., + 21’p:j,. - 21P$, - 4P$,) 81s,t-2 (26) 

for even I, with 

= ([-2m + (m - 1)2 In(m/(m - 1)) + (PI + 1)” Int(m + O/m>1 %L.~ 
+ [t(2m + 1) - mtm + 1) Mm + l>/m)l L,,m+l 

4 [@m - 1) - mtm - 1) Mm/b - WI hd,m-I> 

x (1 - %d,,%n,0)(1 - %d*M~m,M) 

+ [&(3 - 2M) + CM - 1)” WWM - ON L~.ML.~ (27) 

[Should one wish to include the trivial perturbation associated with Eq. (17), it 
is useful to note that Pz!,,, with m’ or m zero does not need consideration since 
it is always multiplied by I’1 in Eq. (26)], 

and 
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(b2 + a”> 
~l’.rn’,l.nz = 4 [Cl2 + 1) Qllt!., + 2Q2.m. + 2Q:!m, + 4Qb&nl %.I 

- (b2 ; a”) [(I’ + l)(Z - 1) Qjj, + 2(1 - 1) Q;!,, 

- 2(/’ + 1) Q$c - 4Q:b S,,,,,, 

with 

- (b2 ; a2) [(I’ - I)(1 + 1) Q;!,m - 2(1 + 1) Q;?“!,,,, 

+ 2(1’ - 1) Q:;m, - 4Q%J &,,-, , (30) 

(31) 

and 

x (1 - S,~*,S,,,)(l - Sm~J4Sm.M) + L~,,L,o - (3M - 1) %ToJb4~, 

(32) 

Q ;!,, E lo1 a,b” d# 
d(+-1’2@; m,(#lFI)) d(9”‘“@z.&N 

d+’ 
d* 

= & [2(3m2 + 1) S,*., - (3m2 + 3m -I- 1) a,~,,+~ 

- (3m2 - 3m + 1) S,~,,-J(1 - Sm~,O&J(l - hd,~A,d 

+ Sm,,&,,, + (3M2 - 3~4 + 1) Srn~,~hn,~ - (33) 
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IV. SPECTRAL PROPERTIES 

Although our major interest lies in determining the nature of the unstable 
modes that are possible in a specific configuration, it is worthwhile to investigate 
the full spectrum of the system. 

Analytic determination of the spectrum is quite difficult to accomplish in 
general. However, considerable understanding of the nature and number of 
continuous and discrete spectra that are present can be obtained from a study 
of special cases. Here we sketch such a calculation to indicate what should be 
expected. 

Continuous spectra are characterized by eigenfunctions having singular behavior 
somewhere inside the plasma. For example, if the matrix associated with terms 
with the highest derivative with respect to # in the Lagrangian has a vanishing 
determinant on some surface inside the plasma, then the eigenfunctions can have 
a local [ln(# - &) + constant] behavior. At such points the constant can have 
an arbitrary finite discontinuity. This provides the possibility of satisfying the 
boundary conditions for a band of eigenvalues and leads to a continuous spectrum. 

For definiteness, consider the model treated in Section III. We see from Eq. (22), 
or from Eq. (25) of Dewar et al. [lo], that the set of Euler-Lagrange equations 
that makes the Lagrangian, Eq. (I), stationary can be written in the form 

g(5) = Z’(~~ + CT’ + T/# + W/v9 5’(vV + (W’/2# + Y4P) SC+) = 0, (34) 

where primes denote derivatives with respect to #, T, W, and X are the infinite 
tridiagonal matrices 

T(#l = (G-I 3 24 cash 2~0, G+3, 

WC+) s (-(I - 1) G-I, 0, 0 + 1) G,,), (35) 

X(#) = (2$G;-, + 1(1- 2) GI-, , -21”Ft cash 2/.~,, ,2#G;+, + 1(Z + 2) Gr+J, 

and 5 is the vector (&} with I odd. 
Clearly, the set of modes with I even can be treated similarly. As in the earlier 

work [lo], 

and 

4 = [(I - w12 - ~~~/powz~l, 
GI = [(I + 1 - nq)(l - 1 - nq) - p2/p,pa2], 

cash 2~~ = (b2 + a”)/@” - a”). 

Note that T and X are symmetric matrices and W is antisymmetric. We approxi- 
mate this system by working with finite matrices of order 2N + 1. 
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We choose a $ = $S and o2 such that the determinant of To z T(t,hJ is zero. 
This eigenvalue problem for w2 is equivalent to the eigenvalue problem 

[( -f- - 4) I v+ I2 (gj - inq) + 5 I v* I21 C”(#s , 0) = 0 ae (36) 

when 1 V# I2 is expressed in the 16, 0 coordinate system of Section II. The possible 
eigenvalues w2 form a continuum as $rS ranges from 0 to 1. 

The system of Eqs. (34) is singular at y = $ - #, = 0, and we seek solutions 
that vary as y”. We calculate the eigenvalues and eigenvectors of To, 

To& = h&, k = -N,..., N, (37) 

and arrange the counting so that A, is the nondegenerate vanishing eigenvalue. 
For simplicity, we assume that ([,, , To’&,) # 0. The modifications of the ensuing 
discussion that would otherwise be necessary are straightforward but tedious. 

Introducing the projection operator 

(Pohi = (fo‘o)i (to), (38) 
so that 

pot0 = to ; PO5‘k = 0, k # 0, 

we can express 5 in a series 

5 = -f 7, (39) 
In=0 

where 
7, = yp+m-lPou, + yp+“(l - PO) urn (40) 

with p to be determined and the a,,, a set of vector constants. Introducing Eq. (40) 
into Eq. (34) yields 

where 

~(T,,J = ~p++~H(p + m) CT,,, + 0( yp+--l) (41) 

H(P) = P(P - 1) To + E(P - 1)” To’ + (P - 1) ~oM,l Po - (42) 

Thus Eq. (34) is converted, by equating powers of y, into a set of equations for 
a, in terms of u, with II < m. In order that these equations can be solved 
successively, it is necessary that H(p) not have a vanishing determinant. This is 
the case, as can be seen in the representation where To is diagonal, because we 
have assumed that A,, is not degenerate, (to , T,‘t,) # 0, and we can observe that 
(to , Wfo) = 0 since W is antisymmetric. 
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The equation for u0 is homogeneous. In order for it to have a solution, the 
determinant of H(p), which is proportional to p2”‘(p - 1)2N+2, must vanish. 
When p = 0, Ho, = 0 has 2N independent solutions that can be expressed as 

0, = (1 -P&u, (43) 

where u,, is an arbitrary vector. When p = 1, it has 2N + 1 independent solutions 

a, = u1 (W 

with u1 arbitrary. The remaining solution for p = 1 is logarithmic; it can be 
expressed as 

5=tlny+ f T,, (45) 
m=l 

where % is the particular p = 1 solution of Eq. (34) for which 5, satisfies 

WP) ) 
aP 9-I 

00 = (To + yq o. = 0. (46) 

Thus 
5 = to ln(# - A> + WI. (47) 

The natural conditions for matching across the singularity are that the 2Np = 0 
solutions, the 2N p = 1 solutions orthogonal to [,, , and the logarithmic term 
should be continuous, while the p = 1 solution proportional to O0 can have an 
arbitrary jump, since the constant of proportionality may be hidden by the 
logarithm. This provides an extra freedom and permits w2 to be an eigenvalue of 
Eq. (1) regardless of boundary conditions. Since the eigenfunction associated 
with Eq. (47) is dominant near I/ = #*, comparison of the behavior of the different 
components & (in the 0 decomposition) can provide a strong indication of how 
well the numerical program determines the eigenfunctions. 

It is instructive to note that in this model there is only one continuous spectrum 
which is associated with the propagation of shear Alfvtn waves. The low-pressure 
assumption has caused the sound branch to coalesce into an infinite degeneracy 
at w2 = 0, while the incompressibility condition has pushed the discrete fast 
magnetosonic modes to w2 = co. Another relatively simple model is the diffuse 
linear pinch, in which the different modes in 8 as well as in z decouple. In this 
case the eigenvalue problem associated with T,, , analogous to Eq. (36), and 
including the coupling to 6 and T, is 

581/18/z-3 
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with r E yp/B2. Following the general lines of the above calculation, we see that 
there are two distinct continuous spectra, one corresponding to each of the two 
roots of Eq. (48). This is in agreement with the results of Appert et al. [23] and 
of others [24]. We are at present developing programs that will illustrate these 
continua in more complicated systems. 

V. NUMERICAL RESULTS 

The computer program as presently operating is applicable to the special case 
described in Section III. Dewar et al. [lo] reported the results of the study of the 
spectrum as a function of nq which measures the net axial current inside the 
plasma for various plasma density distributions. In this paper we concentrate 
on the convergence properties of the method, comparing eigenvalues and eigen- 
functions in discrete and continuous branches of the spectrum for both global 
and local expansion functions. 

We first consider how the eigenvalue w2 varies as we increase the number of 
expansion functions. For constant density elliptical equilibria, the results can be 
compared directly with analytic solutions [lo], so that this case constitutes a 
valuable nontrivial test of the numerical method. We consider a system with 
nq = 1.5 and b/a = 2, such that the configuration is unstable to the I = 2 kink 
mode. In Table I, we tabulate numerical estimates of the values of w2 for several 

TABLE I" 

M I = OfUfven 1=2kink I = 4 kink 

2 
3 
4 
5 
6 
7 
8 
9 

10 

Exact 

BF FE 

2.83555 2.85150 
2.84768 ” 
2.85OOB ” 
2.85076 ” 
2.85108 ” 
2.85124 ” 
2.85133 ” 
2.85138 ” 
2.85142 ” 

2.85150 

BF FE 

-0.552768 
-0.552870 
-0.552881 
-0.552892 
-0.552894 
-0.552895 
-0.552896 
-0.552896 
-0.552896 

-0.552896 
, ,  

9, 

3. 

, ,  

, t  

3, 

7, 

1, 

-0.552896 

BF FE 

7.06215 7.19253 
7.29600 7.30292 
7.34408 7.33751 
7.36067 7.35274 
7.36800 7.36080 
7.37178 7.36558 
7.37393 7.36865 
7.37525 7.37074 
7.37610 7.37223 

7.37851 

a Values of wa for a constant density elliptic plasma column with a/b = 0.5. Estimates are 
given for both global (BF) and finite-element (FE) expansions as a function of the number (A4) 
of expansion functions. Exact results from reference [lo] are given for comparison. (64 bit pre- 
cision). 
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normal modes of the system versus the number of expansion functions. The 
results of both the Fourier-Bessel expansion of Eqs. (15) and (25) and the finite 
elements of Eqs. (16), (26), and (30) are given, together with the analytical result. 
With both expansions convergence to the correct result is rapid, good accuracy 
being achieved over the entire spectrum considered with very few terms. The 
rather special mode coupling demonstrated by the analytic calculation for this 
constant density case enables an exceptionally good representation of the lower 
Fourier modes, while as more modes couple when we consider higher mode 
numbers the convergence is understandably slower. It is not at all surprising that 
exact agreement with the analytical result [IO] is found for the I = 2 kink using 
linear piecewise finite elements since the exact eigenfunctions vary as A + Bt,h. 
Although such a linear term was added to the Fourier-Bessel expansion, the 
constant part of the perturbation must still be obtained from a combination of 
the Bessel-function contributions. The I = 4 kink, which is quadratic in #, provides 
a more reasonable test of the finite-element expansion. Of course, truncation of 
the Fourier series expansion will always lead to somewhat incorrect values for 
the frequencies of those modes with I-numbers near the limits of the expansion. 
The number of Fourier elements required will also depend on the value of b/a, 
and in general this must be determined empirically in much the same manner as 
M is. 

With a nonconstant density we lose the particularly convenient decoupling 
symmetries that lead to the analytic solutions and to the excellent agreement 
shown in Table I. In Table II we compare the convergence of the I= 2 kink 
mode for a system with identical parameters to the previous case but with 
p(#) = 1.2 - 0.4$, i.e., a roughly parabolic density profile. Again the convergence 
is excellent, good accuracy being obtained with six terms in either expansion. 
The comparison of Table II is typical of our experience with runs with different 

TABLE IIa 

I=2kink 

M BF FE 

2 -0.593664 -0.594428 
3 -0.594632 -0.594193 
4 -0.594872 -0.594921 
5 -0.594953 -0.594985 
6 -0.594980 -0.594993 
7 -0.595010 -0.594980 

BValues of wa for the case of Table I, but with parabolic 
density profile. (32 bit precision). 
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values of b/a, nq, and ~(z,!J); viz, the global expansions show no significant improve- 
ment in convergence over the finite-element expansion for the nonlocalized 
magnetohydrodynamic modes. As indicated by the analytic work, this result 
no doubt has its origin in the coupling through ellipticity to highly localized 
continuous AlfvCn modes. As we shall see later, the finite-element expansion 
gives a far more satisfactory representation of these modes. Since considerably 
more computation is involved in the Fourier-Bessel expansion than with finite 
elements for the same number of terms, this comparison indicates that the latter 
expansion is more desirable. 

One feature that emerges from a careful study of the results is that the conver- 
gence can not always be described empirically as O(M*). In any given calculation 
the value of p necessary to fit the data differs from one mode to another so that 
extreme care is necessary in trying to extrapolate to exact results. 

To show how well the eigenfunctions are approximated we show in Fig. 1 
the 1 = 2 component of [5 - #5(l)] for the unstable kink mode discussed in 
Table II as a function of # for several values of M in a finite-element expansion 
set. This representation is so good that in order to show anything we must scale 
out the dominant 16 behavior. Even so, the difference between ten and twenty 
elements cannot be seen on the figure. 

m:2 --- 
=3 -- 
=4 ---- 

0.0006 = 5 . . . . . . . . 

A = 20,m - 

FIG. 1. The I = 2 component of ((4) - $5(l) as a function of +b in an elliptic plasma column 
with b/a = 2.0, q = 1.5, and p = 1.2 - 0.4 JI, showing rapidity of convergence as the number of 
finite elements is increased. 
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Another useful way of viewing results is to present the spectrum as a function 
of the number of terms in the expansion. We do this in Fig. 2 for the system of 
Table II. Note that, due to the truncation of the expansion functions, the con- 
tinuous spectrum is approximated by a band of regularly distributed eigenvalues. 

100 I 

j  . . . . . . . . . . . . . . . . . . . ( 

I * : : : . : i .iiiill!lllllll 1 

1 
. . . . . . . . . . . . . . . . . . . . : ; i i : . . 

IO 
: ii I I I I I I I I I I I 

. . : : : j j . . : : ! i I i I I I I I I I I I , **..:i............. 1 
I& : ; i i i 1 i i i I I I I I I I I I I 

I - 
X xxxxxxxxxxxxxxxxxx 

* : I : 
: I i i i i I I I I I I I I I I 

0.1 - 
I I 

0 IO M-r 20 

FIG. 2. Spectrum as a function of the number of finite elements for the configuration of 
Fig. 1. Note how quickly the continuous spectrum fills in as the number of elements is increased. 

This band fills in as the number of expansion functions is increased. It is interesting 
to observe how the &‘s converge towards the limit points of the various continua 
branches. Analytic approximations to these limit points are clearly given by the 
relations ~JJ*~ = .Q2/p, , where Q2 is an eigenvalue of the matrix To of Eq. (35) 
(see Fig. (1) of Dewar et al. [IO]) and fr are the minimum and maximum densities 
within the plasma column. At M = 20 agreement to within one percent is achieved 
between the analytic and computed limit points. 

Another study of the efficacy of the code can be made by examining the eigen- 
functions of the continuous spectrum in the vicinity of a singularity of the matrix T 
of Eq. (35). As shown in Eq. (47), the eigenfunctions should vary as &, In ] 4 - $B 1 
where +I is the location of the singularity and &, is the associated eigenfunction 
of To . From this it can be deduced that the jumps in the derivatives of the different 
Fourier components (in 8) for the nonconstant density case should be proportional 
to the ratios of these components in the eigenfunction c1 for the constant density 
case. To test how well this is satisfied, we consider such a mode in the system of 
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Table II. Several components of a singular eigenfunction, determined by means 
of a finite-element expansion, are shown in Fig. 3 for this case. For the calculated 
eigenvalue the singularity should occur analytically at JL, = 0.51, and the deriva- 
tives can be approximated by differencing. A comparison of the numerical results 
with the analytical predictions for this case with A4 = 6 is given in Table III. 

0.05 - 

0.04 - 

t 0.03 - 

5 

0.02 - 

O.Ol- 

FIG. 3. The 1 = 0, 2, 4 components of 5 for a stable mode in the shear Alfvkn continuum 
for the configuration of Fig. 1. The logarithmic singularity being studied occurs annalytically 
at & = 0.51. 

An analogous result using the Fourier-Bessel expansion, is also given. The finite- 
element expansion provides a somewhat better description of the eigenfunctions. 
It is useful to observe that in general the agreement is improved as M is increased 
in the finite element technique (good accuracy is achieved with M = 10 as demon- 
strated in the last column of Table III), since increasing the value of M localizes 
the evaluation of the derivative closer to the surface where the In 1 t/ - ti8 1 term 
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TABLE III& 

1 45,‘) 

-4 
-2 

0 
2 
4 

Computed 
M=6 

FE BF 

0.0035 0.0017 
-0.0209 -0.0168 

0.1512 0.1312 
1.0 1.0 

-0.0465 -0.0271 

Theory 
Computed 
M= 10 

FE 

0.0045 0.0042 
-0.0213 -0.0210 

0.1522 0.1444 
1.0 1.0 

-0.0584 -0.0553 

a Estimates of the jump in the derivative across the singular surface (& = 0.51) of various 
Fourier components, evaluated using finite-element expansions, Bessel functions, and 
according to the theory of Section IV. Parameters for this case are the same as those of 
Table II. Computed results for both expansions were evaluated with a set of 6 expansion 
functions. Results with 10 finite elements are included for comparison. 

FIG. 4. The imaginary part of 5 * 04 for the mode studied in Fig. 3 on a constant z surface 
such that & is largest at 0 = m/4. 
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is dominant. In the Fourier-Bessel treatment, however, extreme care must be 
taken to avoid truncation errors in the evaluation of the matrix elements as the 
number of expansion functions is increased, with the result that it is practically 
impossible to expect really good agreement with the theory for localized modes. 
This observation provides a strong argument for the use of a finite-element 
expansion. 

To indicate how well the eigenfunctions can be represented by a finite-element 
expansion, we show in Fig. 4 the imaginary part of g . Vtj for the configuration 
of Table II. 

SUMMARY 

Here we have described the formalism for a numerical program to determine 
the complete spectrum of general axisymmetric toroidal configurations. We have 
applied it to a special simple model, for which analytic results are available [lo], 
in order to compare the efficacy of global versus local expansion techniques. 
Especially in the case where there are continuous spectra, the adoption of a 
finite-element expansion is shown to be superior. 
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